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Abstract 
 
This paper presents an adaptive control approach using a model matching technique for 3-DOF nonlinear crane sys-

tems. The proposed control is linearly composed of two control frameworks: nominal PD control and corrective control. 
A nonlinear crane model is approximated by means of feedback linearization to design nominal PD control avoiding 
perturbation. We propose corrective control to compensate system error feasibly occurring due to perturbation, which is 
derived by using Lyapunov stability theory with bound of perturbation. Additionally, we achieve stability analysis for 
the proposed crane control system and analytically derive sufficient stability condition with respect to its perturbation. 
Numerical simulation is accomplished to evaluate our proposed control and demonstrate its reliability and superiority 
compared to traditional control method.  
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1. Introduction 

A crane is an important system industrially for car-
rying a heavy object to a desired position within a 
given time interval. Recently, more efficient cranes 
have been investigated and, correspondingly, ad-
vanced control approaches for such systems are being 
addressed. 

Recent addressed cranes are mostly involved with 
complicated nonlinear systems, but for simplicity, 
most engineers usually approximate or linearize the 
model in control design procedures to apply linear 
system theory. Feedback linearization is well used for 
such procedure by which the crane model is linearly 
approximated and then a nominal control framework 
such as PD control, state-feedback control, etc. are 
employed [1-5]. More recently, enhanced control has 
been addressed in [6, 7], and [8] using passivity the-
ory [9] and intelligent algorithm [10]. 

Until now, most authors have avoided the perturba-
tion problem in crane systems, which is possibly 
yielded due to modeling error, change of system envi-
ronment, and uncertainty in practice. In reality, in-
formation about system perturbation is partially 
known such as its upper or lower bound, which is a 
significant factor for system stability. Moreover, this 
information is used to establish robust control strategy 
for perturbed crane systems. 

This paper presents a nonlinear crane control sys-
tem against non-vanishing perturbation. The control 
framework is linearly composed of two control con-
figurations: PD control and corrective control. We 
first design PD control by using a nominal crane 
model without perturbation, which is linearly ap-
proximated by means of feedback linearization. Then, 
we derive a corrective control law for the perturbed 
crane model via Lyapunov stability theory. We con-
sider the change of payload mass as crane perturba-
tion, which is realistic in practice. Corrective control 
is an auxiliary input to compensate system error due 
to perturbation nature. We accomplish stability analy-
sis for a perturbed crane system embedded with the 
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proposed control method through Lyapunov perturba-
tion stability theory. We assure that the proposed 
control methodology is referred as a design guideline 
for prospective crane control systems. Computer 
simulation is carried out for evaluating our control 
method and demonstrating its superiority compared to 
the traditional control method. 

The remainder of this paper is organized as fol-
lows: In section 2 we describe a 3-DOF crane system. 
In section 3 the proposed control design is derived for 
a perturbed crane system. Stability analysis of the 
control system is carried out in section 4. Numerical 
simulation is presented in section 5. Finally, the con-
clusion and future work are given in section 6. 

 
2. Nonlinear crane model 

We consider a 3-DOF overhead crane system in 
this paper, shown in Fig. 1. The dynamic equation of 
this system is given by 

 

M V
0
0

x

y

x x f
y y f

G
θ θ
φ φ

⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ + =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦⎣ ⎦ ⎣ ⎦

 (1) 

 
where fx and fy are the input forces acting on the cart 
and the rail, respectively; state x and y are the posi-
tions along two axis, and θ is the payload angle with 
respect to vertical direction, and φ is the projection of 
the payload angle. The corresponding matrices in (1) 
are given by 

 

11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

m m m m
m m m m

M
m m m m
m m m m

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (2) 

 
with 

 
11 p r cm m m m= + +  

12 21 34 43 0m m m m= = = =  

13 cos( )sin( )pm m L θ φ=  

14 sin( )cos( )pm m L θ φ=  

22 p cm m m= +  

23 cos( )cos( )pm m L θ φ=  

24 sin( )sin( )pm m L θ φ= −  

31 sin( )sin( )pm m L θ φ=  

32 cos( )cos( )pm m L θ φ=  
2

33 pm m L I= +  

41 sin( )cos( )pm m θ φ=  

42 sin( )sin( )pm m L θ φ= −  
2 2

44 sin ( )pm m L Iθ= +  
 

where mp, mc, and mr are mass of a payload, a cart, 
and a rail, 

 
11 12 13 14

21 22 23 24

31 32 33 34

41 42 43 44

v v v v
v v v v

V
v v v v
v v v v

⎡ ⎤
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

 (3) 

 
with 

 
11 12 21 22 31 32 41 42 0v v v v v v v v= = = = = = = =  

13 sin( )sin( ) cos( )cos( )p pv m L m Lθ φ θ θ φ φ= − +  

14 cos( )cos( ) sin( )sin( )p pv m L m Lθ φ θ θ φ φ= −  

23 sin( )cos( ) cos( )sin( )p pv m L m Lθ φ θ θ φ φ= − −  

24 cos( )sin( ) sin( )cos( )p pv m L m Lθ φ θ θ φ φ= − −  
2

34 sin( )cos( )pv m L θ φ φ= −  
2

43 sin( )cos( )pv m L θ φ φ=  
2

44 sin( )sin( )pv m L θ φ θ=  

 
and 

 
0 0 sin( ) 0 T

pG m gL θ⎡ ⎤= ⎣ ⎦  (4) 
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Fig. 1. A crane system model. 
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We make the following assumptions about the sys-
tem model: First, the payload and the cart are rigidly 
connected and the mass of the connector is neglected. 
Second, the system states and its derivatives are 
measured by using sensors. Third, the cart mass and 
the rod length are exactly known. Fourth, friction at 
the ball joint between the payload and the cart is 
ignored, and this joint is never rotated relative to 
the link rod. Finally, the angle θ is bounded within 
[−π, π]. 

 
3. Controller design 

3.1 Feedback linearization 

We approximate the complicated system model in 
(1) by feedback linearization method [11]. First, we 
rewrite (1) to 

 
( ) ( , ) ( )M q q V q q G q f+ + =  (5) 

 
with 

 
T

q x y θ φ⎡ ⎤= ⎣ ⎦ , 0 0
T

x yf f f⎡ ⎤= ⎣ ⎦  

 
A control input vector f in (5) is defined as 

 
( ) ( , ) ( )f M q u V q q q G q= + +  (6) 

 
where a new control vector u∈R4 is given by 

 
( ) ( )p du K e t K e t= +  (7) 

 
with 

 

{ }, , ,
x yp p p p pK diag k k k k

φθ
=  

{ }, , ,
x yd d d d dK diag k k k k

φθ
=  

( ) , , , , , ,
T T

x y x ye t e e e e x r y rθ φ θ φ⎡ ⎤ ⎡ ⎤= = − −⎣ ⎦ ⎣ ⎦  

( ) , , , , , ,
TT

x ye t e e e e x yθ φ θ φ⎡ ⎤⎡ ⎤= =⎣ ⎦ ⎣ ⎦  

 
Substituting (6) to (5), the system model becomes  

 
0d p pq K q K q K r+ + − =  (8) 

 

where a reference vector 0 0
T

x yr r r⎡ ⎤= ⎣ ⎦ . We 

properly determine control parameters Kp and Kd in 
(8) according to performance specification through 
linear system theory. This nominal parameter is opti-
mally performed under which the system model is 
exactly known. However, this assumption is rarely 
realistic due to system perturbation, which obviously 
causes control deviation in practical implementation. 
Thus, for overcoming such problems, an advanced 
control scheme is significantly required. 

 
3.2 Perturbed system model 

We consider a perturbed crane model as 
 

( ) ( , ) ( ) ( , )M q q V q q q G q q q f+ + + ∆ =  (9) 
 

where ( , )q q∆  is additive perturbation term. For 
compensating system error due to this perturbation, 
we construct corrective control as an auxiliary input 
in the system model in (9). Therefore, control input in 
(7) is linearly composed of nominal input u*(t) and 
corrective input ∆u(t), i.e., 

 
( ) ( ) ( )u t u t u t∗= + ∆  (10) 

 
Substituting (10) to (9), we similarly obtain 

 
1 ( , ) 0d p pq K q K q K r M q q u−+ + − + ∆ − ∆ =  (11) 

 
Intuitively, if 1 ( , )u M q q−∆ = ∆ in (11), the system 
model is identical to the linear model in (8). In prac-
tice, it is hard to mathematically express system per-
turbation in design procedure, but we assume to know 
its upper and lower bounds in this paper. This infor-
mation is even significantly utilized for constructing 
robust control against perturbation. 

 
3.3 Model reference based control design 

We use a model reference based adaptive control 
scheme to derive the corrective control law in (10) for 
a perturbed crane system. This control design is 
aimed to match dynamics of an actual system to a 
reference system model defined as 

 
( ) ( ) ( )m mF t A F t B r t= +  (12) 

 
where reference state matrix Am and input matrix Bm 
are easily settled based on nominal parameter matri-
ces Kp and Kd as 
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4 4 4 40
m

p d

I
A

K K
× ×⎡ ⎤

= ⎢ ⎥− −⎢ ⎥⎣ ⎦
, 4 40

T
m pB K×⎡ ⎤= ⎣ ⎦  (13) 

 
Alternatively, we rewrite the perturbation model in 
(11) as state space equation: 

 
( ) ( ) ( )Q t AQ t Br t= + + Θ  (14) 

 
where 

 

mA A= , mB B= , 1
1 2

0

( , )M q q u−

⎡ ⎤
Θ = ⎢ ⎥

∆ − ∆⎢ ⎥⎣ ⎦
 

 
Again, this design objective is to establish a correc-
tive control ∆u for minimizing dynamic error between 
two models in (12) and (14), defined as 

 
( ) ( ) ( )t F t Q tζ = −  (15) 

 
We use Lyapunov stability theory in this design 

procedure and define a Lyapunov function based on 
(15) as 

 
( ( )) ( ) ( )V t t P tζ ζ ζΤ=  (16) 

 
where P is a positive definite matrix. The derivative 
of the Lyapunov function is calculated as 

 
( ( )) ( ) ( ) ( ) ( )V t t P t t P tζ ζ ζ ζ ζΤ Τ= +  (17) 

 
where 

 
( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

m m

m m

t F t Q t
A F t B r t Aq t Br t
A t A q t Aq t Br t

ζ

ζ

= −
= + − − + Θ
= + − − + Θ

 (18) 

 
By substituting the third term of (18) to (17), we have 

 

( ) 2

T T T T T T T
m

T
m m

T T
m m

V A q A r B P

P A A q Aq Br

A P PA

ζ ζ

ζ ζ

ζ ζ η

⎡ ⎤= − − +Θ⎣ ⎦

+ + − − +Θ⎡ ⎤⎣ ⎦

= + +

 (19) 

 
where η = ζTPΘ. According to Lyapunov stability 
theory, V  should be negative, for which the error in 
(15) is converged. Thus, we have two sufficient sta-

bility conditions for 0V <  as follows: 
(1)  A Lyapunov equation T

m mA P PA I+ = −  should 
be negative definite, where I is an identity matrix with 
same size to Am and P. 

(2)  A scalar η  in (19) should be non-positive, 
i.e., η < 0. 

We simply seek the first condition (1) by selecting 
a positive definite matrix P since Am is properly given 
as a Hurwitz type. Next, we satisfy the second condi-
tion (2) by analytically settling ∆u such that the cor-
rective control is derived from this procedure. Letting 

 

1 2
Tζ ζ ζ= ⎡ ⎤⎣ ⎦ , 11 12

21 22

p p
P

p p
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

 

 
the second condition is expanded as 

 

( ) 1
1 12 2 22 1 2( , ) 0p p M q q uη ζ ζ −⎡ ⎤= + ∆ − ∆ <⎣ ⎦  (20) 

 
Since the elements of matrix M are given and its 

inverse matrix M-1 is simply calculated in design pro-
cedure, we obviously define its bounds. As well, we 
assume that the bound of perturbation ∆(q1,q2) in (20) 
is known. Using these facts, we easily derive ∆u(t) to 
satisfy an inequality in (20) as 

 

( ) ( )1
1 12 2 22 1 2max max ( , )u sign p p M q qζ ζ −⎛ ⎞∆ = + ∆⎜ ⎟

⎝ ⎠  

 
(21) 

 
This control law is simply constructed based on the 

maximum bounds, which are actually fixed in prac-
tice. But the sign of (ζ1 p12+ζ2 p22) in (21) is changed 
according to modeling errors ζ1 and ζ2 generated due 
to perturbation. This realizes accomplishing the adap-
tive control scheme. 

 
4. Stability analysis of perturbed crane systems 

We carry out stability analysis of the crane control 
system by using Lyapunov perturbation stability the-
ory for non-vanishing systems. 

 
Theorem 1 (converse theorem) 

Consider a nonlinear dynamic system with an equi-
librium point x = 0 as 

 
( , )x f x t=  (22) 

 
where norm of x∈Rn is less than a positive constant r, 
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i.e., ||x|| < r. If a solution of this system is expressed as 
 

0( )
0 0( ) ( ) , 0t tx t k x t e t tλ− −≤ ≤ ≤  (23) 

 
where k > 0, a Lyapunov function satisfies the follow-
ing three inequalities: 

 
2 2

1 2( , )c x V x t c x≤ ≤  (24) 

2
3( , )V V f x t c x

t x
∂ ∂+ ≤ −
∂ ∂

 (25) 

4
V c x
x

∂ ≤
∂

 (26) 

 
where c1, c2, c3, c4 > 0.  

 
Consider a nonlinear dynamic model with nominal 

and perturbed terms, respectively, as 
 

( , ) ( , )x f x t g x t= +  (27) 
 

where f(x,t) is a nominal system function and g(x,t) is 
a perturbation function. Assume that a perturbation 
function is bounded as 

 
( , ) ( )g x t x tγ≤  (28) 

 
where γ > 0. For a perturbed model, we have a deriva-
tive function as 

 

( , ) ( , ) ( , )V V VV x t f x t g x t
t x x

∂ ∂ ∂= + +
∂ ∂ ∂

 (29) 

 
where two partial differential terms ∂V/∂t and 
(∂V/∂x)f(x,t) involve a nominal function, which are 
simply calculated from given system equation. A 
partial differential term (∂V/∂x)g(x,t) with respect to a 
perturbation function is rarely obtained from analyti-
cal calculus since information about perturbation is 
unknown. However, by using the inequalities in (25) 
and (28), we have 

 
2

3

2 2
3 4

( , ) ( , )VV x t c x g x t
x

c x c xγ

∂≤ − +
∂

≤ − +

 (30) 

 
If γ is very small, i.e., γ < c3 / c4, the inequality in 

(30) is rewritten by 

2
3 4( , ) ( )V t x c c xγ≤ − −  (31) 

 
From this result, we conclude a Lyapunov stability 
criterion for perturbation systems. 

 
Theorem 2 (Lyapunov perturbation stability)  

For a nominal function f(x, t) in (27) which is satis-
fied with relation to (24)-(26), if a perturbation func-
tion g(x, t) is concerned with (30) and (31), a per-
turbed system in (27) is asymptotically stable at an 
equilibrium point x = 0.  

If a nominal model in (27) is linear, i.e., f(x, t) = 
Ax(t), a perturbed system model is expressed as 

 
( ) ( ) ( , )x t Ax t g x t= +  (32) 

 
with real{λ(A)}<0 where λ is eigenvalue. This state-
ment indicates that if a nominal system is asymptoti-
cally stable, solution of a square matrix P exists from 
Lyapunov equation 

 
PA A P QΤ+ = −  (33) 

 
where a matrix Q is positive definite. Using eigenval-
ues of a matrix P, for Lyapunov function V(x) = xTPx, 
we have 

 
2 2

min max2 2( ) ( ) ( )P x V x P xλ λ≤ ≤  (34) 

2
min 2( )V Ax x Qx P x

x
λΤ∂ = − ≤ −

∂
 (35) 

2 222

max 2

2 2

2 ( )

V x P P x
x

P xλ

Τ∂ = ≤
∂

=
 (36) 

 
Thus, its derivative for the perturbation term is ob-
tained as 

 
2 2

min max2 2( ) ( ) 2 ( )V x Q x P xλ λ γ= − +  (37) 

 
From (37) we have a sufficient condition for 

( ) 0V x <  as 
 

min

max

( )
2 ( )

Q
P

λγ
λ

<  (38) 

 
We use this result for the stability criterion of our 

crane control system including perturbation.  
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To utilize the procedure, we separately express nomi-
nal and perturbation terms in (11) as 

 

1

2

0 ( )
( ) ( )

( )p d

I q t
f q Aq t

K K q t
⎡ ⎤ ⎡ ⎤

= = ⎢ ⎥ ⎢ ⎥− −⎢ ⎥ ⎣ ⎦⎣ ⎦
 (39) 

1

0
( )

p
g q

K r M u−

⎡ ⎤
= ⎢ ⎥

+ ∆ + ∆⎢ ⎥⎣ ⎦
 (40) 

 
We simply realize stable dynamics for a nominal 

function f(x) in (39) by determining proper values of 
Kp and Kd by means of linear system theory. Letting 
Q = I8×8 in (33) for simplicity and using a matrix A in 
(39), for satisfying a Lyapunov equation in (33), we 
thus obtain 

 
1 1 1 1 2

1 1 2 1 1

2( )1
2 ( )

d p d p d

p d d p

K K K K K
P

K K K K

− − − −

− − − −

⎡ ⎤+ − −
⎢ ⎥=
⎢ ⎥
⎣ ⎦

 (41) 

 
Since 4 4,p dK K R ×∈ , there are eight eigenvalues in a 
matrix P. We denote a maximum eigenvalue of it as 

 

{ }1 2 8
max , ,...,p p pλ λ λ λ∗ =  (42) 

 
According to (34)-(36), we obtain c3 = I and c4 = λ* in 
(39) and (40); thus the norm of a perturbation func-
tion g(q) in (40) is expanded as 

 
1

2

1

1

( ) ( , )

( , )

( , ) max( ( )

p

p

p

g q K r M q q u

K r M q q u

K r M q q u

−

−

−

= + ∆ + ∆

≤ + ∆ + ∆

≤ + ∆ + ∆

 (43) 

 
Alternatively, we express a perturbation term in (40) 
with constant γ as 

 
1 2 1 2( , ) ( , )q q q qγδ∆ =  (44) 

 
In general, the perturbation norm is relatively smaller 
than one of a state vector Q, i.e., 

 
1 2 2 2( , )q q Qδ ≤  (45) 

 
Therefore, the derivative of the Lyapunov function 
for our system model becomes 

 

{ }
2
2

21
2

( )

2 max( )p

V q Q

K r M Q uλ γ∗ −

= −

+ + + ∆
(46) 

 
From this inequality, we simply seek a sufficient con-
dition for stability as 

 

21
2

max( )

max( )

pK r u

M q
γ

−

+ ∆
< −  (47) 

 
Remark  

The proposed crane control system with perturba-
tion is asymptotically stable if there is a constant 
value satisfied with an inequality in (47) for system 
dynamics. 
 

5. Simulation study 

The proposed crane control system is numerically 
simulated to evaluate its control performance. We 
carry out three simulation experiments in turn: First, 
we design nominal PD control for a non-perturbed 
crane model, where a proper parameter vector is ana-
lytically selected by using linear system theory. Sec-
ond, we apply a constructed PD control to a perturbed 
crane system, and lastly, we design and numerically 
test the proposed control for a perturbed crane system. 

 
Case 1: We adopt parameter values of the crane 

system from  [5] as follows: mp = 160 [kg], mc = 23 
[kg], mr=190[kg], L=2.5[m], and I=1.5[kg⋅m2]. We 
settle reference values rx=10[m] and ry =3[m], respec-
tively, and control time interval is 80 sec. Perform-
ance specification for controller design is given as 
follows: zero steady-state error, no overshoot behav-
ior, and 30 second settling time. For this specification, 
we analytically determine nominal PD parameter 
values as 

 
{0.1, 0.25, 0.5, 0.35}

{0.35, 0.5, 0.8, 0.75}
p

d

K diag

K diag

=

=
 

 
We apply this nominal PD control for the non-

perturbed crane model and plot its system response 
shown in Fig. 2. From this result, we observe that 
there is no overshoot in the position responses for 
both x- and y-axis, and their settling times are ob-
served at about 12 and 15 sec. As well, trajectories of 
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two angles shown in Figs. 2(c) and (d) are obviously 
converged into an equilibrium state within the given 
control time. As expected, the nominal PD control is 
suitably performed against the crane system avoiding 
perturbation. In other words, the PD control properly 
works for the nominal crane system. 

Case 2: We test the PD control designed in Case 1 
by applying it to a perturbed crane model. To realize 
system perturbation, we increase the mass of the pay-
load to 3000 [kg]. Namely, the change of payload 
mass in crane systems is reasonably encountered in 
industrial fields. The rest of the simulation environ-
ment is identical to Case 1. We plot system response 
for this control system in Fig. 3. Apparently, the re-
sponses are not converged to an equilibrium state 
within the given time interval, unlike Case 1. The 
crane positions hardly reach the reference values, and 
trajectories of the angles are irregularly oscillating. 
Thus, the control dynamics is wholly unstable. The 
simulation result demonstrates that nominal PD con-
trol is unsatisfactorily accomplished for the perturbed 
crane system. 

Case 3: This simulation is aimed to evaluate our 
proposed control approach for the perturbed crane 
system configured in Case 2. We use the PD control 
constructed in Case 1 as a nominal control and design 
a corrective control based on the guideline stated in 
Section 3. Information of the crane perturbation pro-
vided in Case 2 is used to define its maximum bound 
for control design. Fig. 4 shows system responses for 
the proposed control system. All of the trajectories are 
obviously converged to their reference values satisfy-
ing the performance specifications. Obviously, there 
is no overshoot in transient response, and settling time 
for two positions is about 25 and 28 sec, respectively; 
these are more increased than those of Case 1, be-
cause the mass of the payload is much bigger. We 
observe that this control performance is superior to 
that of Case 2 and conclude that the proposed control 
is effectively carried out against the perturbed system. 
 

6. Conclusion 

This paper presents an adaptive control approach 
for complicated nonlinear crane systems with pertur-
bation. The proposed control is linearly composed of 
nominal PD and corrective control frameworks. The 
nominal PD control is constructed by using a non-
perturbed crane model that is approximated through a 
feedback linearization technique. The corrective con- 

 
(a) Crane position x(t)         (b) Crane position y(t) 

 
         (c) Loop angle θ(t)           (d) Loop angle φ(t) 

 
Fig. 2. Crane system responses (Case 1). 

 

 
         (a) Crane position x(t)               (b) Crane position y(t) 

 
           (c) Loop angle θ(t)                    (d) Loop angle φ(t) 
 
Fig. 3. Crane system responses (Case 2). 

 

 
        (a) Crane position x(t)                (b) Crane position y(t) 

 
            (c) Loop angle θ(t)                    (d) Loop angle φ(t) 
 
Fig. 4. Crane system responses (Case 3). 
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trol is established from the perturbed crane model by 
means of Lyapunov stability theory to compensate 
system error occurring due to uncertain perturbation. 
In addition, we conduct stability analysis for the per-
turbation crane system embedded with the proposed 
control. We analytically prove the implemented crane 
system is asymptotically stable with respect to bound 
of the perturbation. For evaluation of the proposed 
control scheme, numerical simulation is carried out 
by comparing the traditional control method. We 
realize system perturbation by changing the mass of 
the payload within an allowed bound. The simulation 
result demonstrates its superiority to the PD control 
well-used in industrial crane control. Future work will 
include real-time experiments to examine its practi-
cality. 
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